

An Integrated Computational Platform to Assess Safety and Compatibility of Orthopedic Devices

Vincenzo Carbone, Elena Lucano, Alberto Palazzin, Luca Emili InSilicoTrials Technologies, Italy

INTRODUCTION

Regulatory bodies impose **stringent pre-market controls** to certify the **safety and compatibility** of **medical devices**.

Standard tests required for regulatory submission may be expensive, time-consuming and challenging for orthopedic implants because of many possible sizes and configurations.

Modeling and simulation (M&S) tools can be used to **provide efficiencies** in the **amount of physical testing** to be conducted.

RESULTS

The **web interfaces** of the **cloud applications** allow the user to easily **define** the **geometry** and **material parameters** of the **device**, automatically **set-up testing scenarios**, **run simulations** and **process outcome**, with the option to **summarize the results** in accordance with current **FDA guidance on M&S reporting** [4].

Validation & tutorials > Standard ASTM F2996-13 - Hip Femoral Stem	P Edit this page	
STANDARD Hin Stem Testing R	Application [STANDARD » A	ASTM F2996-13 - Hip]

Validation & tutorials > Standard ASTM F3161-16 - Knee Femoral Component	¥ Edit this page	
STANDAF Knee Component Testing		Application [STANDARD > ASTM F3161-16 - Knee] Steps Co

InSilicoTrials.com is an **integrated computational platform** with **several applications** for *in silico* **testing of orthopedic devices**, in line with **recognized standards** and **regulatory guidelines**.

MATERIALS AND METHODS

Two ASTM applications were developed within the InSilicoOrtho digital library. The M&S workflows were implemented on the CONSELF platform (https://conself.com/) using Salome-Meca 2017 to compute static implant stresses and strains on metallic orthopedic devices, following the requirements and considerations of ASTM F2996-13 for non-modular hip femoral stems [1] and ASTM F3161-16 for total knee femoral components [2]. Simulation results were consistent with those reported in the two standards.

POST-PROCESSING RESULTS

Web interface of the InSilicoOrtho cloud applications

Web interface of the NuMRis cloud applications

The **integrated platform** can be used to **evaluate design alternatives**, test **multi-configuration devices**, perform **multiobjective design optimization** and identify **worst-case scenarios** within a family of implant sizes.

Overview of the InSilicoOrtho cloud-based applications workflow

The NuMRis application (https://numris.insilicomri.com/) was developed within the InSilicoMRI digital library. The M&S workflow was implemented using ANSYS HFSS and ANSYS Mechanical 2019R3 to compute RF energy absorption and thermal heating for 1.5 T and 3 T MRI systems, replicating the ASTM F2182-11a Standard Test Method [3]. Simulation results were validated against in vitro measurements.

Max Pr	incipal	Neck length (mm)				Max		Neck length (mm)						Max		Neck length (mm)					
Stress (MPa)		55	50	45	40	35	SAR-1g (W/Kg)		55	50	45	40	35		Temp. (°C)		55	50	45	40	35
k angle (°)	135	775.50	754.04	704.22	625.64	452.68	k angle (°)	135	389.38	393.05	394.42	394.86	395.67		k angle (°)	135	46.22	48.17	46.90	45.42	46.70
	130	805.75	743.61	693.50	644.62	492.74		130	389.01	391.65	394.31	394.19	394.70			130	45.82	45.99	46.99	46.32	46.10
Nec	125	773.81	728.69	671.72	648.10	506.06	Nec	125	388.46	390.88	393.37	395.26	395.62		Nec	125	46.04	47.52	46.38	46.85	46.19

Worst-case assessment within a family of hip femoral stems. From left to right: Simulation of Maximum Principal Stress (ASTM F2996-13), Specific Absorption Rate (ASTM F2182-11a) and Temperature Increase (ASTM F2182-11a)

DISCUSSION

InSilicoTrials.com contains a collection of M&S applications to assess the safety and compatibility of orthopedic implants before prototyping, helping manufacturers to accelerate time and reduce costs during the device development.

Overview of the NuMRis cloud-based application workflow

In silico testing provide manufactures with the information they need to improve design confidence and reliability, accelerate design cycles and processes, and avoid unnecessary tests.

The proposed platform promotes the **broader adoption of digital evidence** in preclinical trials, supporting the **device submission process** and **pre-market regulatory evaluation**, and helping **secure regulatory approval**.

References

[1] ASTM F2996-13 – Standard Practice for Finite Element Analysis (FEA) of Non-Modular Metallic Orthopaedic Hip Femoral Stems.

[2] ASTM F3161-16 – Standard Test Method for Finite Element Analysis (FEA) of Metallic Orthopaedic Total Knee Femoral Components under Closing Conditions.

[3] ASTM F2182-11a - Standard Test Method for Measurement of Radio Frequency Induced Heating On or Near Passive Implants During Magnetic Resonance Imaging.

[4] Reporting of Computational Modeling Studies in Medical Device Submissions, FDA guidance 2016.